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A UNIFIED THEORY OF PLAS:IC BUCKLING
OF COLUMNS AWD PIATES T =

By Elbridge Z. Stowell

SUMMIRY

- On the basis of modern plasgticlity conslderations, a uniried
'theory of plastic buckling applicseble to both colunns and plates
has been developed. For uniform compression, the thoory shows
that long columns which bend without apnreciable twisting require
the tangent modulus and that long flanges which twist without
appreciable bénding require the secant modnlus. Structures thet
both bend and twist when they buckle require a modulus which ia
a combination of the secent modulus and the tangent modulus.

TINIRODUCTION

The calculaetion of the critical compressive stress of columns
and of structures made up of plates is en important problem in
ailrcreft design. Formulas for the critical compressive stress
have been worked out for a mulititude of casses of both columms and
plates, but these formulas sre accurgte only if the buckling takes
place within the elastic range of the m: terial. In present—day
deslgns, most buckling occurs sbove the slastic range. The usual
mothod of handling this problem is to retain all the formula,s .
derived for the elastic case, but to try to discover an effective,
or reduced, modulus of elasticity wiiich will give the correct result
when 1nserted. in'bo these formulas. =

Column buckling was the firgt struchural problem to be studled
in the plastic range. In the lastter pzrt of the nineteenth century,
Engesser proposed use of the tangent modiius as the reduced modulus
for colummg. At almost the same tlms, in the belief that the
column would be strengthened by unloa.d.ing on the copvex side,
Considdre suggested that the effective modulus should lie between
the tangent modulus and Young's modulus. This concept was subse—
quently refined by Engesser and by von Kérmén (refsrence 1) and
led to what is generally known as the "double modulus.”
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Experiments have shown, however, that the von Karmin double
modulus gives values that are too high for the column strength
(reference 2) and thet the correct modulus is nrobably the
tangent modulus. Shanley (reference 3) has stated the situation
compactly as follows: "If the tangent modulus is used directly
in the Euler formula, the resulting critical loed 1s somewhat
lower than that given by the reduced modulus theory. This
slmpler formula, originelly proposed by Engesser, 1s now widely
uged by engineers, since it glves values that agree very well
with test data." Further careful tests by Shanley (reference 4)
and also by Lengley structures research laboratory have shown
that the unloading on one side of the coiumm, postulated by
von Kédxrmén, does not occur at buckiing #nd that the correct modulus
for columse is actually the tangent modr.us., This conclusion also
hag theoretical justifioation (references 3 and 4).

In . the case of local or plate buckling, the reduced modulus
18 appreciably higher than the tangent wodulus, Tegts of the
local buckling stress of aircraft—section columns have been made
by Gerard (reference 5), who has sugagested the use of the secant
modulue for this type of buckling. Extunsive tesgts in the
Langley structures research laboratory on similar ailrcrelt sec—
tions made and reported over a perlod oi' geveral years and
surmarized in reference 6 have also shown that the reduced
modulus for plates is in the vicinity of the gecant modulus.
In particular, tests of long aluminum-glloy cruciform—section
columns; designed to buckle by twisting wilthout appreclable
bending, have been made in a manner similar to that described
for the alrcraft-section coluuns in reference 6. Tho results
have shown that the reduced modulus for pure twisting is very
close to the secant wedulus,

Tho present paper constitutes a theoretical lnvestipation
of the buckling of plates beyond the elastic renge, which includes
colums as a limiting case, Such an inveatigatlion requires a
knowledge of the relatlions between the stress and strain components
beyond the elastlc range. These relaticne have not as yet boeen
conclusively determined. A recent paper by Handelman and Prager
(reference 7) based on ons pogsible set of stress—strain relutions
led to results for +the buckling.of hinged flanges in sharp disagree—
ment with test results obtalned at the Landley structures research
laborabory., Another set of stress-strain relations is generelly
accepted by the Russlen Investimators and hes been applled by
Ilyushin (reference 8) to the stress conditions in thin plates.
These results form the foundation of the present vaper, which
aggumes that 1n plates as well as in columng unloading during the
early stages of buckling does not occur, On this basie, a unifisd’
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theory of plastic buckling applicable to both column and local
buckling has been developed. The results are presented in the o
following section. ' : o o

RESULTS AND CONCLUSIONS

Ilyushin (reference 8) has treeted the stability of plates
stressed above the-elastic limit with conaideration of the three
possible zones that might result from buckling: (1) a purely
elastlic zonse, (2) a zone in which part of the material is in the
elastic and part is in the plastilc state - the "elasto.plastic”
zone, end (3) a purely plastic zone in which all of the plate
is stressed beyond the elastic limit. All three zones may exist
simuitaneocusly if the plate is not enbirely in the plastic state
before buckling or if the buckling is allowed to procesed beyond
the initlal stages.

If, however, the plate is wniformly loaded befors buckling
go that all parts of 1t arc inltially at the sams point in the
plestic rangs and if, in addition, buckling and increase in load
are assumasd to progress simultaneously, then the plate may be e
expected to remain in ths purely plastic etate in the early stages :
of buckling. This second assumption 1s in agreement wlth the
corresponding condltion that apparently holds for columms
(reference 4).

Uponn the assumption that the plate remains in the purely
Plastlic state during buckling, Ilyushin's general relations for
this state have been used to derive the differential equation of
equilibrium of the plats under combined loads. Since critical
stresses are generally simpler to compute from energy oxpressions
than from & differential equation, the corresponding energy sxpressions
were also found. These derivations are glven in appendix A,
together with applications to compressive buckling of various. types
of plates. A comparison with Ilyushin's treatment of the plastic-
buckling problem is gliven in appendix B.

The results of most interest in the present analysls are given
in the following tabls as values of a quantity 1, the number by
which the critical stress computed for the elsstic case must bo mulil-
plied to give the critical stress for the plastic casge:

v
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Curve
Structure 7 (See fig. 1)
Esec
Long flangs, one A
unlogded edge, E
glmply supported
Long flangs, one E E
unloaded. edge SZO 0,428 + 0,572 % i e B
clamped, _ Esec
Long plates, both gec
unloaded edges C
sluply supported B
Long plate, both gesc
unloaded edges D
clamped E
Short plate B -
loaded as a 1 Zgec 3 “tan
= o+ I
g T L E
column (ﬁ <<Ib
b Y, :
Sguare plate ) T
loaded as T
vaded ag a 0.11k éec + 0.88¢ ten 1)
'L .
column { =~ = 1
e (1 +)
' E
1 tan
L - 1 —a ¢
ong qolumn (P >> ) 7
i

These values of g

stress was 46 ksi,

are plotted ag curves ‘A to G in figure 1
for extruded 24S-T aluminum alloy for which the compresaive yleld

Similar curves for 1

could readily be

prepared for any other material having a known stress—strain

relationship.
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The velues of 17 given in the teble were obteined by dividing
the critical stress of the structurs in the plastic region by the o
critical stress that would be obtained on the assumptlion of perfoct
elasticity. Since Poisson's ratio has been taken as one-half in both
computations, errors from this cause will ordinarily be present in
both critical stresses. Mosgt of thess errors will be eliminated,
howover, in the process of division %o obtain n; and, oonsequently;
the values of 1 given are believed to b2 nearly correct.

When plate-buckling stresses in the plastic rangs are to be com-
puted, the experimental valus of Poisson's ratio' that applies as
closely as possible to the stressed mate isl, together with the appro- S
priate value of 1 flom.this paper, should be uged in the Dlate- )
buckling formula.

‘1

The highest valus of 17 which is ,122 can be realized only if
there is negligible longitudinal bending (as with a long hinged flange

E
which buckles by twisting). The lowest value of 7 which is ;an

occurs whsan the longlitudinal bending predominates over other itypes of

distortion (as with a long columm under Euler buckling). The theory

implies that & change in the stress-strein curve caused by pre-

stressing of the material would alter the value of 7 in the first

case but not in the second, if the buckling stress is higher than the

highest stress reached during the operation of pre-stressing. If, cn

the other hand, the buckling stress is lower than the highest stress o
reached during the operaticn of pre-stressing, then 17 = 1 for each

casge. : E

‘Natlonal Advisory Committee for Aeronautics
Langley Memorial Aeronautical Iaboratory
Langley Fileld, Va., July £9, 1947
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APPENDIX A

THEORETICAL DERIVATIONS

Dofinitiong.— The intensities of stross snd straln are defined
in reference 8, respectively, as

2 2 ' |
01 = \fox~ + 0,5 ~ Ox0y + 372 (1)
2 2 2 p ' '
0 = m—— + + e 6. + (2)
i =\ [e € € xf,,.
V3 \/x v b |
where
oy gtregs in the z~-direction
€x gtrain in the x-direction
cy gtrese 1in the y-dirsction
€y strein in the y-direction
T shear stress
» shear strain

Accordiug to the fundamental hypothesls of the theory of plesticity,
the lutenaivy of stress o4 s a uniquely defined, single—valued

function of the intensity of straln ey for any glven material
if o0y dincrosyss in magnitude (loeding condition). If oy
decroases (unloading oondihion), the relation betweoen oy end e,

becomes linear sg in a purely elastioc casme.

In the equations of definition (1) and (2), the material is taken

to bo incompressible ond Polssonlts ratic = %. The stress—abrain
rélations compatible with the equations of definition (1) and (2) are:
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1
°x -7 5
Gx = =
Esec ESGG
1
Uy - ng Sy
€ = = §
7T TR, B ( : (3)
y = 3T
Egec
g1
ei = .
Esec

These relations lmply isotropy of the material.

Variations of strain and stress.- When buckling occurs, let
€xy €,, and 7 vary slightly from thelr velwnes before buckling,

The variations 8¢y, &€y, and By will arise partly from the

variations of middle-surface strains and partly from strains due to
bending; thus, :

B¢y =1 - 2Xg
. >
Gey = 62 - zX2 (4)
] . = 2¢€ - 27
7 37 g

in which €3 and leg are'middle-éurface strain varlations and €3
is the middle-surface shear-strain variation, Xy and X, are the
changes in curvature and X3 1s the change in twist, and z 1is the
distance out from the middle surface of the plate.
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The corresponding variations 83,, &5 and &t in S,

y’
Sy, and T mwst be computed. From equations (3),
S = Bgoe &
therefore .
!
do
o 1
=B Be, — —= / -~ —= 1 o
gec Ofx 91. \ 1 dey 1 (5)

Now the variatlion of the work of the inbernal forces i1s

gy Bey = 0y Sey + Oy Bey + TBy

so that

e e Oy Be, + O Be, + T By

- .v.-" . 651 y y
SRS o

_ Oy + Oyey + 2Te, — erJ'Cxl + T X, 21)(3) ©

Oy

Substitution of this valus of Bei in equation (5) gives

Bsx.-Esecae' -cx (AL el+ore +2‘To.=.3
Uiei

. Z("xx:l + oyXp ¥ 27)%)]
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Let the coordinate of the surface for which 8ey = O (the neutral

The expression for =z is obtained by sétting

- surface) be 2z = 2 o

0.
8eq4 = O in equation (6);

. = Oy€7 +-a:,,€2 + 2"'._€g 7
o .
OgXl + °yX2 + 2rx3 _

By introductlon of 'ghis coordinate into the expression £or SSx and

i

g4
by recognition of -e-; as Ese and o as Etan

C ei

85; = Bgee (el - ZXTL)

€x :
o + 0'161<Esec - E'ban) (\o‘xxl + O X, + 2TX3) (z — 2g) (8) |

' In a similer way it may be shown that

85, = Bggo Q—:Q - zxe)

: -
¥
+ — (Esec - Etan) (crxxl * OXy + 21-x3>(z - 25) (9)

and

30’16:1

ag—4 (Esec - Eta_n) (Uxxl . Oy Xp + 2-rx3)(z ~ 25} (10)
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Variations of forcegi and momonts.— For the variations of the

impressed forces Ty,

and.Mxy

Ty, ?.nd Txy

|
]

i
—
g

™
Y
N

i

o)
i
<
t
-
T

RIS PIE PEE PIF O D O O DI O o o

5T dz

&
q .
(_ll
T

zZ 4z

- &
e

e

n
Q

q
3]
o9
o)

o
g
‘_B
TS

[0 ]
_]
N
o
[

2
s
-n
\T\\’.;-

where h 1g the thicknesa of the plate.

and the moments M., | My,

(11)

":—-;__"j ...-_....__'-_-_ﬁ._. o "y

[ .

s
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From equations (3), (8}, and (9),

h
a2 1
EMx 3" B ésx+ Esss)z dz

2 . ‘

. L
: 1.\][ 2 : X, + = %
._Esec €l+569 thZ_EBeC l+-§ N
. h ‘ — — . -
x .
., X2 7 y (
e - K X + O +2'rx3) ‘ — 2z _}4z
0384 ( tar) = 2 f ' 0)

LN
N
"
N

i
wF

lb‘ r\)lb' (V=g

, €, i cy B
2 tan
—t{1 - @xxl
B
i 1 gec
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Similarly,
L
s, =2 2 (es 1 Los. )z an
¥y 3|/ h\ vy 2 /"7
1173
. o“
=Dt/ 11 _.%sz) ] . .ten Xé 2 1 _.3?53¥ 1 . uen X,
\g i .
1 }i'se 20,2 Egec
oT B
_.23. L 1-Eta“ X, (13)
oy sec
h
oM 2 BT 2z dz
xy h
Vo3

Q
'-l

Q.

2
-2 ~ 31 4l tan

(1k)

In these expreassions,. the integrationg of 8S,., GSy, and 8T in

the plastic region heve been taken over the ontire thickness of the
plate, with the implication that no part of the plate is being
wmloaded, .. . . . . .

Equation of equilibrium.— If w(x,y) is the bending deflectlon
of the plate at buckling, and 1f no external moments are applied to

the plate, then the equation of equllibrium of an element of the
plate may be written

8225:]{) aiisnadw) aegaMy) h(o egw+c aew o aew) (15)_ 9
X v v

yaye dy

in which the ilmpressed forces cyh, cyh, and 7Th are consldered

as given (o, and o, are positive for compression). In terms of

¥
w, the changes In curvatures are
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Xl = ~ (16@?

and
_ % -

X, = o (16b)

The change In twist is
ng
X = (16c)
3 xx dy

When the velues of 8H,, BMy, =nd &M, in equations (12}, (13),

and (1%), respectively, are diTleI'entl"bGd. as required by equation (15)
ond substituted in that equation, the gonerel differential equation
of equilibrium for a plate in the plestic stote im obtalned =28 follows:

‘ ta.n ki
o
( Esec) ( )Bx3 Sy

+21—3cx0'y+2-r l_’can 2y -3 OyT l_tan Sty
: b 612 B oo/l 32 oig Egec Bxay3
oo | l — i —o‘—}: — P-.—b-w—m— -&E 2T e -1};\- g _a_a.ti + O fl‘{ -+ 21- aev
E o1 L E'Yu pi-\ ¥ a2 7 oy? ox dy
(a7)

In the elastic ronge, equation (17) reduces to the ueual form

v"‘w - _ % aew a_ac_f_ . o7 %y
= \72 &x Jy
vhere
En3
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Energy integralg,— Equation (17) is the Eulsr eguestion that
results from a minimization of the integral

[[_. o (L o, e s oY S
e

32 @@ xdy 3 |\axoy/  mE o0
Pw Py aawi‘ DOy | 0% /aw\2
~c, S 4o (2Z) i L ""(’a—
dx dy Oyt ? \dy° J 2 _?i X/ .
or 3w v . Oy /o -
+:g§§§+a(\5§) dx dy (18)

which represents the difference between the strain energy in tﬁq
plete and the work. done on the plate by the external forces. THe
coefficients in this integral are: :

In the plastic reglon - In the elastic region
2 N
X
C; =1- 3 nif) (: - tan;) c, =1
. 1. Esec
o7/ E "
. ten
02=3?:-§(1~E ) 02-0
1 gec
. 30#cy+272 E
C, =1 — 1~ 228 C, =1
3 N g 2 E 3
1 geq
oT E‘ta.n
¢ = i} ¢, =0
y =3 .2 E L
1 . 8eG
2
e [ E
o5=1-%<—51 1. t8n C.=1
o3 Egoc 2




If there 18 a restraint of magnitude ¢ along ons longlitudinal edge of the plate, the strain energy

2

in this restraint 1tself is taken to be :E
g

g DY ) &

— e— l L]

3 [(ﬂj 0s)

v Vg G

A

if 3y, 1s the edge coordinate. (See reference 9 for form of expression,) Tn expresaion (19), the

gtiffness D' 1s assumed to be the same as that in equation (12). If restraints ero present slong
two edgos, there will be two terms gimilar to erpression (19) These terms may be added to
integral (18} es additlomnal strain evergy. ST

Critical atregss in plastic region.— Tf the mtegral {18), suppiemented if necemgary by addi-—

ticnal terme of the form of expression {19), is set equal to zero and the resulting equation solved.
for gy, the critical-stress intenaity in the plastic reglon (cri)
-

() ‘:w/]ﬁ'{c @) .c%; w0 @? :j; :Eyg_ ;2;%% ( |L J \@W: .
nl

h _ ,
NICE

in which the values of the C's in'the ‘plagtic range are used. This expression for 'bhe critical—
stress Intensity mny be minimized as with the corresponding elas‘bic casge, .

(20)

ot



If the values of the C's in the elastic region are used in formula (20), the
critical-stress intensity In the elastic reglon (Ui)el is ag follows:

e @ as @l i), =

J I
T &r-se - o)

(iel %

-

E'maq%on for n.—A Qmmtity 'q is dsfined as
: o ) ("1)
(Ui)el

(21)

(22)

This aoentity is a direct meesure of the effectiveness of plzsticity in ‘r-aiucing the
critical stresa of a gtructure, and its computatlion In terms of the constants of the

stress—gtrain curve represen-l;s the solutlon of the problem of plastic buckling.

Amlicatjgg_ to pletes compreased in the xdirection.—- The theory will new be’

applled to flat, rectangular plates uniformly compressed in the x—-direction. Values

of n will be computed for the following cases:

I. Long plates with one free edge (flanges), the other edge being elther hinged

or clamped
II. Long plates with both ed.ges aithér hingsd or clamped

ERRE Platves with two free e

ot

OGGT *ON NI VOV
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When op =T = 0, oy =0, end the plasticity coefficients reduce to

Ey

et g

EEBO

I—P
a
£

+ .
= Hao

CEECLI-:O'
and

C3=05=1

The d1fferential eguation of equilibrium, equation (17), then becomes

v, A v Mrak
laxll_ &zeaye Byl" pr 312

n
W

and.the corresponding energy expression {20) for the critical stress in the plastic range
hecomes - ' .

V2 J

T i ae . /. o . 2
[l B ) B8 ) w1 @) =

gy Dt 0|
(Gx)pl = il"' e (24)

Case I: Elagtically restreined flange

If y =0 1 the elastically rostrained edge of the flange and y = b is the free
edgo, & deflection murface known to be good in the elastioc range and presumably satis—
factory also heyond this range is (reference 9)

96T 'ON NI VOWVN

LT



b

where
a.l = —h.963
a2 = 0.8
n = N 7R
8y = =3.77C

and ¢ 1s the magnitude of the elastic restraint. Substitution of thig expression for w

in equation (24) gives _ .
' ' ¢y €
oo Lo, % lfl_..;___l*_é\fﬁb\CL ‘

1 1 €
...g.i{g,..__ -.\4--_. Crp + -
S AR N B YA T
o 2 1, 58¢ , %g¢2 b°h
3 2a3 1I-a32
whero
c, = 0.2369h S5 = 0.56712
cy = 0.79546 - cg = 0.17564
03 = 0.89395 Cq = 0.19736
cl|. = 0.0’-!-286 08 = -—2.3168
oq = k0982

8T
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Tn order to £ind the mintmm velue of (d!)pl

a(ﬂ'x)“l <o
b 2
B(?T
vhich glves ] c5 e)
— 11
of | 0%
A . c .

The minimm value of (oy) ., 1s therefore
pl
: — 2
Q€ c,6 cy, €
1, ¢ € 5)(1 1 L
._§+E(c-a——03)+—-G6—~c7)+2\jcl g(l"'T ‘g+———h+ _
(oa) = 2 / - x 0"
Tl €
7 J,.[.E.Biq.c bEh
3 Za 2

Tor the elastic case, the seme expression is obtained from eguation (21) with C, = 1 end

D' replaced by D. From equation (29, therefore,

6T

GCCT 'O NI VOVN



. 8
n = - > {25)
Cr€ C.,& €
3og fa-to) e (og-tog)ee /e (ar (20 20, 2)
A N S BN < Y Ve TN 8 /
(a) IF the edgs y =0 4s hinged, € = 0O and, from equation’ (25),
B
soc
= (26)

-

‘This value, a.s a Punction of stréss, is plotted as cﬁrve A for okST aliumimm alloy 1n

- IR | e KAAA o B AT Theenle] A on PR, —
4 LMUIT L, J..U.U J.u.u.l.u.uuu..L PUJ..LI.UB .l‘U_p.L‘UHOub U.UU FAICIVILN WEUH UL Lilgy uw;.n_u_:.xg, U L AL

section colimmg for which the condition € = 0 1g fulfilled,

- (b)If the edge y =0 is clamped, € = ® and, from equstion {25},

%-(csnlc\;-a-z\[(i—\é;—:%-

‘1__ 7 l Gh‘C:]

Zoe 0.330 + 0.670 l‘-+3- ten (27)
( LookE .

b=

03

- 0GGT *ON NI VOVH
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This valus of 7 1s plotted as curve B for '.Elbs'-‘]f_"'aiuhinm alloy
in figure 1.

Case II: Plate eias’oica.lly restfa’inpd aiong two uirﬂ:oad.ed edges

If y=1% % are the immoveble unloaded sdges which are o
elastically restrained agalnst raotetion by restraints of magnitude €,a
satisfactory &sfloction surfoce is known to be (reference lp) _

2 .
we=| Z8( T LVe{1 4+ £ Yeos ZL {cos ZX
2 'b2- )-l- 27 b . A

T

Substitution of this expression for W in equation (24) gives

o -8 < 0 @ 0] 2

where )
0.0237¢2 + 0.297¢ + £ |
lfl(e) = : : - -
' 0.00461¢® + 0,0947¢ + =
2
and o
0.011khe> 4 0,180ke + 1 -
fg(E) = , i : ~

0.00461€2 + 0.0947¢ + %

In order to. find the minimum velus of (o’x)
o
Ao _

<

C) -\

pl e

which gives
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The nminimum valuelof (UX)pl is therefore

Dy = 215 T < 200 22

For the elastlc case, the saﬁe expresslon is obtained fram
equation 221) with €, =1 and D! replaced by D, From
equation (22), therefGre,

b 2 D+ 00
B ex/fl(e) + fg(e)

() If tho edges y = *
fol€) = 2, and, from equation (28),

. B . ' ‘.\
. . E
) Esec 1 +y/01 _ Esec L, 111 . 3 _tan (29)
- = - \ |
2 - 2 BT L Eo.

n = (28)

ol kep

are hinged, € = O, fl(e) =1,

n % F >

This velue of 7 1is plotted as curve C for 24S-I aluminum alloy in
Tigure 1.

(b) If the edges y = ¥ g ave clamped, e = =, £i(¢) = 5.15,
fe( €) = 2,46, and, from equation (28),
Egoo 2-46 + u.523/cl
E 6.98

n::

E — _E, _
= 222 {0,353 + 0.6&7\/1 , 2 (30)
E k 1*Esec.

This valuse of 7 1is plotted as curve D for 24S-T aluminum alloy
in figure 1.
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Case IIT: Plastic buckling of columns.

For the discusslion of the plastic 'buckling of columns, it is
convenlent to revert to the differential equation (23). The plate,
when loaded as a column, has two free edges describsd by the condi-—

tions
B%V‘ L 13 W\ -
\ ay2 2 x” /y—-"'b
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A soiu'i:ion of equation (23) which idan't;:tcally gatisfies the .first’

condltion 1s
W = q_c:oe;—ﬂ-'cos]:'n.gti;r-+pc:é>sh93c:osp—I cos IX
2 D 2 b I3
where .
2 L}
oo=1:\l \/-+ k + )\1-0)
o Lo, o 1Y (1o
B=n\/{\-—€-+\/k+ 7 Q'_Cl)
2
Dt
ox) k&
2. .
p = o2 -1 ()
2\1? y
2
2,1, by
. 1 2\t /
E
1, 3 “tan



ok NACA TN No. 1555

In order that this solution also satlsfy the second condition
at the free edges, it 1s required. that
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vhich 1s the buckling criterion for the plate when loaded as a

column. Let
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where 52 is & quantity to be determined for three ind.ivid.ual cases.
By use of equation (32) ;
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and the buckling criterion given in equation (31) becomes
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From equation (32), k -‘(%) ( -t )‘ end thus the critilcal

gtress in the plastic range is
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' The corresponding critical stress in the elastic range is

rteE(l - £2)
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The reduction factor 1 1s obtalned from formula (22) as
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() In order to investigate the case of short columns, 1ot &
approach zero. Then, by definition of B,

B—>0
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-and
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In addition,

2 4 (11;-52)( -\/:-—52)—90-

The buckling criterion given in equation (33) therafore reduces to

> tanh—
§+l—§2Q+\]1-—g = 0
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The expression in the brackets approaches % ag £—>0, In order
to satisfy the buckling criterion, therefore,

tanh <
; 2_—)0
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vhich can be reslized only if o is large; that is, if b 15 large.
For short columns, therefore, L

and, from oquation (34),

na g+ 21D (35)

This value of 7 1s plotted as curve E for 248-T aluminum alloy
in figure 1.
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(b) For a square plate, %: L, a= n:\/l + N }l - 2

B =1ix \/l - 1 - .2, eand the buckling criterion given in
equation (33) becomes
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which is satisfled by &° = 0,15375. From equation (3u),

E . E
n = 0.11k s;" + 0,886 28 (36)
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This value of 1 is plotted as curve F for 2US-T aluminum slloy
In figure 1.

(c) For long columns, o end B become so small that
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and the buckling criterion of equation (33) reduces to N
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which is gatisfied by ¢> =

i

From equation (34},

B
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This value of 7 agrees with the experirental results of

references 2 and 4 and 1s plotted as curve G for 24S-T eluminum
alloy in figure 1.
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APPENIIX B
COMPARISON WITH ILYUSHIN'S STABILITY CAILCULATIONS

The basic differsnce between Ilyushin's solution of the plastic-
buckling problem and that given in this paper is that Ilyushin con-
siders the plate to unload on one face as it~buckles. The unloading
procegs regaults In the creation of an elasto-plastic zone in the
plate, and different equations from those that apply when the plate
remaing plastic during the buckling process are required for this
Z0NRa . . '

The differentlal equation fou the buckling of a rectangular
plate when buckling is accompanied by unloading is given by Ilyushin
a8 equation (3.43) of reference 8. For simple comp.ession in the
x-direction this equation is of the same form as equation (23) of
the present paper, Put with the following different constants:

D is used inetead of D' and

K =1 - at3(3 - 2t)

g .

is used instead of Eﬁén « 1In the formula for k, from equation (3.1)
sec

of refsrence 8,

1-/1 -
£ =

P
end, from emation (1.22) of reference 8,

B
M=l . 8B
B

When the values of § and A dre inseited into the expression
for k
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will result in appreciably higher va.;Lues

Computation shows that k 1s always larger than

B
uge of k in place of tan

Egec .
of 7 than those given in the present paper. Since Ilyushin uses
the elastlc value D there is no possidbillity of the solution
yielding a secent modui 3. Curves A to G in figure 1, if com-
puted from Ilyushin's equation (3.43), would start with a horizontal
line at unity for curve A (Young's modulus) and end with curve G
expressing the Kdrmén double modulus which is appreciably higher then
the tangent modulus of this peper. If D' wore substituted. for D
in Tlyushin's equation (3.43), curve’ A would then represent the
gecant modulus as it does in the present paper, but cuirve G would
8ti1l remein the Kérmén dolble modulus. Thereforse s When the unloeding
of the plate during the buckling process is considered, results are
obtained which are not confirmed by expeiiment.
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- Figure |.— Computed curves showing variation of 7 with siress for

various structures of 24S-T dluminum alloy in compression. (Curves
A to G are drawn for a material with o yield stress of 46 ksi. The
scatter band enclosing curve A shows the limits of variation of specimen
properties from this value.)



